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FUNDAMENTAL SOLUTIONS FOR STATIONARY VIBRATIONS

OF AN ORTHOTROPIC ELASTIC MEDIUM

UDC 539.3A. O. Vatul’yan and E. M. Chebakova

An integral representation of the fundamental solution for stationary vibrations of an orthotropic
medium is constructed, its asymptotic behavior is studied for large wavenumbers, and some special
features of the wave-field structure are discussed.
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Introduction. The boundary integral equation method is an effective tool for solving boundary-value
elastic problems [1], which allows the dimension of the problem to be reduced by one. To formulate boundary
integral equations, it is necessary to construct fundamental solutions [2]. In the isotropic theory of elasticity, the
fundamental solutions for two-dimensional stationary vibrations are expressed in terms of the Hankel functions. In
contrast, in the orthotropic case, explicit fundamental solutions cannot be constructed, but for practical applications,
it suffices to obtain integral representations. Such a solution in the form of contour integrals in the complex plane
was constructed in [3]. In the present paper, representations of the fundamental solutions for a two-dimensional
orthotropic medium [4] are constructed in the form of integrals over a finite interval and their properties are studied.

Formulation of the Problem. We consider plane-strain stationary vibrations of an infinite orthotropic
elastic medium induced by a point force applied to the point with coordinates (ξ1, ξ3). We denote the frequency of
the vibrations by ω.

After elimination of the time factor e−iωt, the equations of motion for the vibration amplitudes for an
orthotropic material become

LijU
(m)
j + ρω2U

(m)
i + δ(x− ξ)δim = 0 (m = 1, 3), (1)

where ρ is the material density and Lij are partial differential operators with constant coefficients:

L11 = C11 ∂
2
1 + C55 ∂

2
3 , L33 = C55 ∂

2
1 + C33 ∂

2
3 ,

L13 = (C13 + C55) ∂1 ∂3 = L31, ∂j = ∂/∂xj (j = 1, 3)

(Cij are the elastic constants of the orthotropic material subjected to the conditions of symmetry and positive-
definiteness of the elastic energy). The problem of constructing fundamental solutions is closed by the radiation
conditions at infinity formulated with the use of the limiting absorption principle [5].

Constructing the Solution. Using the operator method, system (1) can be reduced to the governing
equations obtained in [6]. Integration of the latter is substantially simplified if the operator of these equations can
be represented by superposition of two generalized metaharmonic operators of the second order and if a method
of correction of their elastic constants can be used. It is worth noting that implementation of this method for
constructing the fundamental solutions leads to a large error; therefore, below we use another method.

Using a two-dimensional Fourier integral transform, we obtain a solution of system (1) in the form [3, 4]

U
(m)
j (x1, x3, ξ1, ξ3) =

1
4π2

∫ ∫
Γ

pjm(α1, α3, ω)
p0(α1, α3, ω)

exp [i(α1(ξ1 − x1) + α3(ξ3 − x3))] dα1 dα3. (2)
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Here pjm(α1, α3, ω) and p0(α1, α3, ω) are polynomials of the second and fourth orders, respectively:

p1m(α1, α3, ω) = δ1m(C55α
2
1 + C33α

2
3 − ρω2)− δ3mα1α3(C13 + C55),

p3m(α1, α3, ω) = δ3m(C11α
2
1 + C55α

2
3 − ρω2)− δ1mα1α3(C13 + C55);

p0(α1, α3, ω) = (C11α
2
1 + C55α

2
3 − ρω2)(C55α

2
1 + C33α

2
3 − ρω2)− α2

1α
2
3(C13 + C55)2.

These polynominals possess the evenness property: pjm(−α1,−α3, ω) = pjm(α1, α3, ω), p0(−α1,−α3, ω)
= p0(α1, α3, ω); Γ is a surface that coincides with the real plane R2 except at the zeros of the polynomial
p0(α1, α3, ω), which are enveloped by the surface from below in accordance with the radiation conditions.

Curves of Polar Sets. Converting to the nondimensional variables

αj = kβj , k = ω
( ρ

C33

)1/2

, γ1 =
C11

C33
, γ5 =

C55

C33
, γ7 =

C13

C33

and changing the variables β1 = β cosϕ and β3 = β sinϕ, we write p0 and pjm as

p0(α1, α3, ω) = p0(kβ cosϕ, kβ sinϕ) = C2
33k

4p∗0(β, ϕ),

pjm(α1, α3, ω) = pjm(kβ cosϕ, kβ sinϕ) = C33k
2p∗jm(β, ϕ) (j,m = 1, 3)

and analyze the zeros of the polynomial p∗0(β, ϕ). The polynomial is a biquadratic polynomial for the parameter β
and can be written as

p∗0(β, ϕ) = A(ϕ)(β2 − ζ2
1 (ϕ))(β2 − ζ2

2 (ϕ)),

where

ζ2
1 (ϕ) = (b(ϕ)−

√
D(ϕ) )/(2A(ϕ)), ζ2

2 (ϕ) = (b(ϕ) +
√
D(ϕ) )/(2A(ϕ)),

A(ϕ) = γ1γ5 cos4 ϕ+ cos2 ϕ sin2 ϕ(γ1 − 2γ5γ7 − γ2
7) + γ5 sin4 ϕ, b(ϕ) = γ5 + sin2 ϕ+ γ1 cos2 ϕ,

D(ϕ) = [(γ1 − γ5) cos2 ϕ+ (γ5 − 1) sin2 ϕ]2 + 4(γ5 + γ7)2 sin2 ϕ cos2 ϕ.

We consider the discriminant of the polynomial p∗0(β, ϕ) — the function D(ϕ). One can easily infer that
D(ϕ) > 0 and the discriminant vanishes only in two cases: 1) ϕ = 0 and γ1 = γ5; 2) ϕ = π/2 and γ5 = 1. These
cases are exceptional since the polynomial p∗0(β, ϕ) has multiple roots and will not be considered below. In the
remaining cases, the discriminant is positive and the set of the zeros of the polynomial p∗0(β, ϕ) are two closed
nonintersecting curves ζ1(ϕ) and ζ2(ϕ) that possess symmetry about both coordinate axes and intersect them at
right angles. Both curves are fourth-order algebraic curves and, according to the general theory of fourth-order
curves [7], the internal curve ζ1(ϕ) is convex for any material and the number of possible inflection points of the
external curve ζ2(ϕ) should be equal to 8, 4 or 0. Budaev [8] gave a detailed classification of the curves according
to the nondimensional parameters α = γ5/γ1, β = γ5, and γ = 1− (γ7(γ7 + 2γ5))/γ1. He found that four different
configurations of these curves are possible [in Fig. 1, curves 1 and 2 refer to the dependences ζ1(ϕ) and ζ2(ϕ),
respectively]. It should be noted that cases are possible where the external-curve segments with negative curvature
do not intersect the coordinate axes, intersect both axes or intersect one the axes. In the method of elastic-constant
correction [6], the polar sets are always two ellipses, in contrast to the fourth-order curves considered above.

The nondimensional parameters γ1, γ5, and γ7 define the curves ζ1(ϕ) and ζ2(ϕ) completely. We consider
the configurations of these curves for various values of the parameter γ5 and fixed parameters γ1 = 0.4 and γ7 = 0.2.
Figures 2a and 2b show the curves ζ1(ϕ) and ζ2(ϕ), respectively, for small values γ5 = 0.1–0.8 and Fig. 2c shows
the curve ζ1(ϕ) for large values γ5 = 5–100. For small γ5, the curves ζ2(ϕ) have one common point with the polar
coordinates (0.615, 2.236) in the first quadrant, whereas the curves ζ2(ϕ) almost coincide for large γ5.
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Constructing Solutions in the Form of Single Integrals. To simplify (2), we write the integrand as

p∗jm(β cosϕ, β sinϕ)
p∗0(β cosϕ, β sinϕ)

=
2∑
k=1

akjm(ϕ)
A(ϕ)(β2 − ζ2

k(ϕ))
,

where

a1jm(ϕ) =
Bjm − ζ2

1 (ϕ)Gjm(ϕ)
ζ2
2 (ϕ)− ζ2

1 (ϕ)
, a2jm(ϕ) =

−Bjm + ζ2
2 (ϕ)Gjm(ϕ)

ζ2
2 (ϕ)− ζ2

1 (ϕ)
,

G11 = γ5 cos2 ϕ+ sin2 ϕ, G33 = γ1 cos2 ϕ+ γ5 sin2 ϕ,

G13 = G31 = −(γ5 + γ7) sinϕ cosϕ, B11 = B33 = 1, B13 = B31 = 0.
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We note that for any orthotropic materials, the functions possess the following properties:

akjm(ϕ+ π) = akjm(ϕ), akjj(−ϕ) = akjj(ϕ), ak13(−ϕ) = −ak13(ϕ),

ζk(π + ϕ) = ζk(ϕ) = ζk(−ϕ), k = 1, 2, j,m = 1, 3.

We transform (2) by converting to the polar coordinates

|x− ξ| = r, ξ1 − x1 = r cosψ, ξ3 − x3 = r sinψ.

By virtue of elastic symmetry, we assume that ψ ∈ [0, π/2]. As a result, we obtain

U
(m)
j (r, ψ) =

1
(2π)2C33

∫
σ+

2π∫
0

2∑
k=1

akjm(ϕ)
A(ϕ)(β2 − ζ2

k(ϕ))
exp (ikβr cos (ϕ− ψ))β dβ dϕ

=
1

(2π)2C33

∫
σ+

π∫
0

2∑
k=1

akjm(ϕ)
A(ϕ)(β2 − ζ2

k(ϕ))

×
[
exp (ikβr cos (ϕ− ψ)) + exp (−ikβr cos (ϕ− ψ))]β dβ dϕ

(σ+ is the part of the cross section of the surface Γ formed by the plane ϕ = const that lies in the right half-plane
and envelops the poles of the integrand from below). The integrals over the contour σ+ are evaluated by the method
outlined in [9].

We consider the integral

I2(z, ζ) =
∫
σ+

exp (iβz) + exp (−iβz)
β2 − ζ2

β dβ.

To evaluate it, we introduce the contours

C+
Γ = σ+

R ∪ C
+
R ∪ [iR, 0], C−

Γ = σ+
R ∪ C

−
R ∪ [−iR, 0]

(C+
R and C−

R are parts of the circumference of radius R with center at the coordinate origin that lie in the first and
fourth quadrants, respectively, and σ+

R is a segment of the contour σ+ located inside the circumference of radius R).
Using contour integration and Jordan’s lemma [10], we obtain

I2(z, ζ) = πi exp (izζ) +

∞∫
0

exp (−tzζ)
t2 + 1

t dt = πi exp (izζ)− [ci (zζ) cos (zζ) + si (zζ) sin (zζ)],

where ci (x) and si (x) are integral cosine and sine, respectively [11]:

ci (γ) = C + ln γ +

γ∫
0

cos t− 1
t

dt, si (γ) = −π
2

+

γ∫
0

sin t
t

dt

(C is the Euler constant).
In a similar manner, we calculate I2(z, ζ) for z < 0. Combining these two cases, we arrive at the following

representation of the fundamental solutions:

U
(m)
j (r, ψ) =

1
2π2C33

π∫
0

2∑
k=1

akjm(ϕ)
A(ϕ)

F2(tk(r, ϕ, ψ)) dϕ, (3)

F2(z) = (πi/2) ei|z|− ci |z| cos |z| − si |z| sin |z|, tk(r, ϕ, ψ) = krζk(ϕ) cos (ϕ− ψ).

For an isotropic material, we have

γ1 = 1, γ5 = (1− 2ν)/(2(1− ν)), γ7 = ν/(1− ν)
727



(ν is Poisson’s ratio), ζ1(ϕ) and ζ2(ϕ) are circumferences, and representation (3) becomes the well-known represen-
tation in terms of Hankel functions [1].

We note that the fundamental solutions constructed above possess the following symmetry properties:

U
(m)
j (r, ψ) = U

(m)
j (r, π + ψ) (j, m = 1, 3), U

(m)
j (r,−ψ) = U

(m)
j (r, ψ) (j = m),

U
(m)
j (r,−ψ) = −U (m)

j (r, ψ) (j 6= m).

Constructing Asymptotic Representations. We study the structure of the fundamental solutions (3)
for small and large values of r using an asymptotic expansions of special functions.

Bearing in mind that si (z) ∼ −π/2 and ci (z) ∼ C + ln z as z → 0 [11], we obtain the following asymptotic
representation of the fundamental solutions (3) for r → 0:

U
(m)
j (r, ψ) = − ln (kr)

2π2C33

π∫
0

2∑
k=1

akjm(ϕ)
A(ϕ)

dϕ+O(1), j,m = 1, 3. (4)

It follows from (4) that the leading term of the asymptotic representation of the fundamental solutions has
a logarithmic singularity for r → 0, as in the isotropic case.

Taking into account the estimate − ci |z| cos |z| − si |z| sin |z| = O(1/z2) for |z| → ∞ [11] and using the
properties of the functions akjm(ϕ), A(ϕ), and ζk(ϕ), one can show that the following two integrals make the main
contribution to the asymptotic representation of the fundamental solutions for large r:

U
(m)
j (r, ψ) =

i

4πC33

( ψ+π/2∫
0

2∑
k=1

akjm(ϕ)
A(ϕ)

exp [ikrζk(ϕ) cos(ϕ− ψ)] dϕ

+

π∫
ψ+π/2

2∑
k=1

akjm(ϕ)
A(ϕ)

exp [−ikrζk(ϕ) cos(ϕ− ψ)] dϕ
)
, j,m = 1, 3. (5)

We construct the asymptotic representation for r → +∞ using the stationary phase method [12]. To find
the stationary points of the phase functions

S+
k (ϕ,ψ) = ζk(ϕ) cos (ϕ− ψ), ϕ ∈ [0, ψ + π/2],

S−k (ϕ,ψ) = −ζk(ϕ) cos (ϕ− ψ), ϕ ∈ [ψ + π/2, π] (k = 1, 2)

for various values of the polar angle ψ ∈ [0, π/2], we employ a numerical method to solve the equations

ζ ′k(ϕ) cos (ϕ− ψ)− ζk(ϕ) sin (ϕ− ψ) = 0, k = 1, 2.

Figures 3a and 3b show the values of the stationary points ϕs(ψ) of the phase functions S±k (ϕ,ψ) for k = 1
and 2, respectively. For calculations, the following nondimensional parameters of the material (BaSO4) were used:
γ1 = 0.687, γ5 = 0.0865, and γ7 = 0.313.

One can see from Fig. 3 that for each value of the polar angle ψ ∈ [0, π/2], one value of the stationary point
of the phase functions S±1 (ϕ,ψ) always exists. There are several ranges of the polar angle, in each of which the
stationary point of the phase functions S±2 (ϕ,ψ) has one value or three values. Namely, one value was found for
ψ ∈ [0, ψ1)∪ (ψ2, π/2] and three values were found for ψ ∈ (ψ1, ψ2); on each boundary of these regions (ψ = ψ1 and
ψ = ψ2), two values of the stationary points exist. One of these is multiple and satisfies the system

S±′ϕ (ϕ,ψ) = 0, S±′′ϕϕ (ϕ,ψ) = 0, S±′′′ϕϕϕ(ϕ,ψ) 6= 0, ϕ ∈ [0, π], ψ ∈ [0, π/2],

which corresponds to a degenerate value of the stationary point. The ψ direction corresponding to the solution of
this system will be called the critical direction. We note that the curvature æ(ϕ) of the function ζ2(ϕ) vanishes for
this value of ψ.
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Applying the stationary phase method to each integral in (5), we obtain the following formula for the main
part of the asymptotic representation U (m)

j (r, ψ) for r → +∞:

U
(m)
j (r, ψ) =

i

4πC33

(√
2π
kr

2∑
k=1

M∑
s=1

√
1

|S+′′
k (ϕs(ψ), ψ)|

[akjm(ϕs(ψ))
A(ϕs(ψ))

+O((kr)−1)
]

× exp
[
ikrS+

k (ϕs(ψ), ψ) +
iπ

4
sign (S+′′

k (ϕs(ψ), ψ))
]

+

√
2π
kr

2∑
k=1

M∑
s=1

√
1

|S−′′k (ϕs(ψ), ψ)|

[akjm(ϕs(ψ))
A(ϕs(ψ))

+O((kr)−1)
]

× exp
[
ikrS−k (ϕs(ψ), ψ) +

iπ

4
sign (S−′′k (ϕs(ψ), ψ))

])
, j,m = 1, 3. (6)

In (6), the upper limit of the summation M can be equal to 1, 2, or 3, depending on the number of values of the
stationary points. For each fixed value of ψ ∈ [0, π/2], the phase functions S+

k (ϕ,ψ) and S−k (ϕ,ψ) have stationary
points that lie within the intervals [0, ψ + π/2] and [ψ + π/2, π], respectively.

The contribution to the main part of the asymptotic representation (6) to the critical directions is given by

U
(m)
j (r, ψ1,2) =

i

4πC33

Γ(1/3)
3

(kr)−1/3
[a2jm(ϕs(ψ1,2))
A(ϕs(ψ1,2))

+O((kr)−1/3)
]

× exp
[
ikrS±2 (ϕs(ψ1,2), ψ1,2) +

iπ

6
sign S±′′′2 (ϕs(ψ1,2), ψ1,2)

]
, j,m = 1, 3.

The main part of the asymptotic representation of the fundamental solutions U (m)
j (r, ψ) is written as

U
(m)
j (r, ψ) =

1√
kr

2∑
k=1

Ajmk(ψ) exp [ikrSk(ψ)], ψ ∈ [0, ψ1) ∪ (ψ2, π/2],

U
(m)
j (r, ψ) =

1√
kr

4∑
k=1

Ajmk(ψ) exp [ikrSk(ψ)], ψ ∈ (ψ1, ψ2) (j,m = 1, 3),
(7)

where

Ajm1(ψ) =

√
2
π

i

4C33

√
1

|S′′1 (ϕ∗(ψ), ψ)|
a1jm(ϕ∗(ψ))
A(ϕ∗(ψ))

exp
[ iπ

4
sign S1(ϕ∗(ψ), ψ)

]
,

Ajmk(ψ) =

√
2
π

i

4C33

√
1

|S′′k (ϕk−1(ψ), ψ)|
akjm(ϕk−1(ψ))
A(ϕk−1(ψ))

exp
[ iπ

4
sign Sk(ϕk−1(ψ), ψ)

]
(k = 2, 3, 4)

are the amplitudes, and

S1(ψ) = ζ1(ϕ∗(ψ)) cos (ϕ∗(ψ)− ψ), Sk(ψ) = ζ2(ϕk−1(ψ)) cos (ϕk−1(ψ)− ψ) (k = 2, 3, 4)
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are the vibration phases. Figure 4 shows curves of the phases versus the polar angle in the first quadrant (by virtue
of the symmetry of the phase functions about the coordinate axes). These dependences correspond to four different
configurations of the curves ζk(ϕ) (k = 1, 2) given in Fig. 1. In Fig. 4a, the functions S1(ψ) and S2(ψ) are presented
in the regions ψ ∈ [0, ψ1)∪(ψ2, π/2] (curves 1 and 2, respectively) and the functions Sk(ψ) in the region ψ ∈ (ψ1, ψ2)
(curve 1 refers to k = 1 and curve 2 refer to k = 2, 3, and 4). On the segment ψ ∈ (ψ1, ψ2), the functions S3(ψ)
and S4(ψ) form a triangular lobe at the center of the figure. In Fig. 4b–d, the lobes formed by S3(ψ) and S4(ψ)
intersect the coordinate axes and the halves of the corresponding curvilinear triangles are depicted on them.

From (7) it follows that there are different numbers of propagating vibration modes (from one to four) in
different ranges of the angle ψ. We note that it is impossible to obtain this structure of the wave field in a far zone
by the method of elastic-constant correction [6] since it gives two traveling waves for all directions.
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